TLR4 drives the pathogenesis of acquired cholesteatoma by promoting local inflammation and bone destruction
نویسندگان
چکیده
Acquired cholesteatoma is a chronic inflammatory disease characterized by both hyperkeratinized squamous epithelial overgrowth and bone destruction. Toll-like receptor (TLR) activation and subsequent inflammatory cytokine production are closely associated with inflammatory bone disease. However, the expression and function of TLRs in cholesteatoma remain unclear.We observed inflammatory cell infiltration of the matrix and prematrix of human acquired cholesteatoma, as well as dramatically increased expression of TLR4 and the pro-inflammatory cytokines TNF-α and IL-1β. TLR2 exhibited an up-regulation that was not statistically significant. TLR4 expression in human acquired cholesteatoma correlated with disease severity; the number of TLR4-positive cells increased with an increased degree of cholesteatoma, invasion, bone destruction, and hearing loss. Moreover, TLR4 deficiency was protective against experimental acquired cholesteatoma-driven bone destruction and hearing loss, as it reduced local TNF-α and IL-1β expression and impaired osteoclast formation by decreasing expression of the osteoclast effectors receptor activator of nuclear factor (NF)-κB ligand (RANKL) and tartrate-resistant acid phosphatase (TRAP). TLR2 deficiency did not relieve disease severity, inflammatory responses, or osteoclast formation. Moreover, neither TLR2 nor TLR4 deficiency had an effect on antimicrobial peptides, inducible iNOS,BD-2 expression or bacterial clearance. Therefore, TLR4 may promote cholesteatoma-induced bone destruction and deafness by enhancing inflammatory responses and osteoclastogenesis.
منابع مشابه
TREM-2 promotes acquired cholesteatoma-induced bone destruction by modulating TLR4 signaling pathway and osteoclasts activation
Triggering receptor expressed on myeloid cells (TREM) has been broadly studied in inflammatory disease. However, the expression and function of TREM-2 remain undiscovered in acquired cholesteatoma. The expression of TREM-2 was significantly higher in human acquired cholesteatoma than in normal skin from the external auditory canal, and its expression level was positively correlated with the sev...
متن کاملAnimal Models of Middle Ear Cholesteatoma
Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism und...
متن کاملExpression of Prostaglandin E2 Receptors in Acquired Middle Ear Cholesteatoma
OBJECTIVES To investigate the expression of prostaglandin E2 receptor subtypes, E-prostanoid (EP) 1-4 receptors, in acquired cholesteatoma and its possible role in the pathologic process of this disorder. METHODS Specimens of human acquired cholesteatoma were obtained from 29 patients and 19 skin biopsies of normal external auditory canal were as controls. The mRNA and protein expression of E...
متن کاملPathogenesis and Bone Resorption in Acquired Cholesteatoma: Current Knowledge and Future Prospectives
Cholesteatoma is a cystic non tumorous lesion of the temporal bone that has the ability to destroy nearby structures by its power to cause bone resorption and as a result, fatal complications prevail. We aimed to conduct a comprehensive review for pathogenesis of acquired cholesteatoma, bone resorption mechanisms, and offer a future vision of this serious disease. We have reviewed different the...
متن کاملTransglutaminase factor XIII promotes arthritis through mechanisms linked to inflammation and bone erosion.
Rheumatoid arthritis is a chronic inflammatory disease characterized by synovial hyperplasia, inflammatory cell infiltration, irreversible cartilage and bone destruction, and exuberant coagulation system activity within joint tissue. Here, we demonstrate that the coagulation transglutaminase, factor XIII (fXIII), drives arthritis pathogenesis by promoting local inflammatory and tissue degradati...
متن کامل